On non-isotropic homogeneous Lipschitz spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Theory of Homogeneous Lipschitz Spaces and Campanato Spaces

In this paper the equivalence between the Campanato spaces and homogeneous Lipschitz spaces is shown through the use of elementary and constructive means. These Lipschitz spaces can be defined in terms of derivatives as well as differences. Introduction. The Campanato spaces have previously been stated by Taibleson and Weiss [13] to be duals of certain Hardy spaces. Further results will be fort...

متن کامل

Tb-theorem on non-homogeneous spaces

0 Introduction: main objects and results 3 0.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.2 An application of T1-heorem: electric intensity capacity . . . . . . . . . . . . 7 0.3 How to interpret Calderón–Zygmund operator T? . . . . . . . . . . . . . . . 9 0.3.1 Bilinear form is defined on Lipschitz functions . . . . . . . . . . . . . 10 0.3.2 Bilin...

متن کامل

Localization operators on homogeneous spaces

Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...

متن کامل

Spaces of Lipschitz Functions on Metric Spaces

In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.

متن کامل

Lipschitz Spaces on Compact Manifolds

Let f be a bounded function on the real line IF!. One may characterize the structural properties off by the modulus of smoothness w(t,f) = sup{lf (4 -f( y)l; x, y E 08, I x y I < t>, and, if w(t) is a continuous nondecreasing function of t > 0 such that w(O) = 0, by the Lipschitz class Lip(w) which is the set of all continuous functions such that su~~<~<i w(t, f)/o(t) < 00. It is possible to ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1989

ISSN: 0263-6115

DOI: 10.1017/s1446788700031670